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A B S T R A C T   

Alzheimer’s disease (AD) is the most common form of dementia and there is no effective treatment currently. 
Using artificial intelligence technology to assist the diagnosis and intervention as early as possible is of great 
significance to delay the development of AD. Structural Magnetic Resonance Imaging (sMRI) has shown great 
practical values on computer-aided AD diagnosis. Affected by data from different sources or acquisition domains 
in realistic scenarios, MRI data often suffer from domain shift problem. In this paper, we propose a deep 
Prototype-Guided Multi-Scale Domain Adaptation (PMDA) framework to handle MRI data with domain shift 
problem, and realize automatic auxiliary diagnosis of AD, Mild Cognitive Impairment (MCI) and Cognitively 
Normal (CN). PMDA is composed of three modules: (1) MRI multi-scale feature extraction module combines the 
advantages of 3D convolution and self-attention to effectively extract multi-scale features in high-dimensional 
space, (2) Prototype Maximum Density Divergence (Pro-MDD) module adopts prototype learning to constrain 
the feature outlier samples in a mini-batch when MDD is used to align source domain and target domain, and (3) 
Adversarial Domain Adaptation module is applied to achieve global feature alignment of the source domain and 
target domain and co-training two distinctive discriminators to mitigate the over-fitting issue. Experiments have 
been performed on 3T and 1.5T sMRI with domain shift in ADNI dataset. The experimental results demonstrated 
that the proposed framework PMDA outperforms supervised learning methods and several state-of-the-art 
domain adaptation methods and achieves a superior accuracy of 92.11%, 76.01% and 82.37% on AD vs. CN, 
AD vs. MCI, and MCI vs. CN tasks, respectively.   

1. Introduction 

Alzheimer’s disease (AD) is one of the most common chronic diseases 
in the elderly. It is mainly characterized by progressive cognitive 
impairment and behavioral impairment. The cause of the disease is still 
unclear [1], and there are no effective clinical methods or medicines can 
cure it. According to the World Health Organization (WHO) [2], more 
than 55 million people live with dementia worldwide and there are 
nearly 10 million new cases every year. AD is the most common form of 
dementia and may contribute to 60–70% of cases. The general patho-
logical manifestations of AD are the reduction of the brain volume, 
followed by deepening and widening of the sulci or atrophy of the 
temporal lobe, especially the hippocampus [3]. Mild Cognitive Impair-
ment (MCI) is a syndrome that occurs in the early stage of AD [4]. MCI is 
more subtle compared to AD in terms of the characteristics of the brain 
lesion and is therefore more difficult to identify. Unlike AD, which is 
irreversible, some MCI is reversible and some patients have a chance of 

improving or surviving with MCI status after early intervention. So Early 
detection of MCI and AD patients, and effective intervention treatment 
are of great significance for preventing or delaying the disease. 

Structural Magnetic Resonance Imaging (sMRI) can provide relative 
values for different tissue types. So the morphological changes caused by 
AD, such as hippocampal atrophy, could be observed in sMRI. It has 
shown significant clinical and practical values in computer-aided AD 
diagnosis. However, such a situation is often encountered when using 
MRI data for auxiliary diagnosis, the relative values for different tissue 
types are often affected by the scanner manufacturer, the scan protocol 
or even the software version. This issue is known as the scanning bias 
[5]. When use model to extract features, it may contain two parts of 
features, one is the feature related to the actual task, and the other is the 
feature related to the scanner bias. If the features that related to the 
scanner bias are more prominent and distract compare with features 
related to the actual task, e.g., disease-related features, it will seriously 
affect the generalization performance of the model. Therefore, scanner 
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bias could result in inconsistent distribution of data features, also known 
as “domain shift” [6]. This has become a prospective problem to be 
solved when faced with MRI data from different scanners and 
institutions. 

Due to deep learning has made breakthroughs in the field of com-
puter vision [7], more and more researchers apply deep learning to the 
classification and recognition of AD [8]. Labeled imaging data is often 
used for supervised learning, and assume that train data and test data 
satisfy the independent and identical feature distributions. However, 
when the feature distributions are inconsistent, the performance of the 
trained classifier on test data will degrade seriously. 

Domain adaptation techniques is a promising approach to handle the 
domain shift problem of MRI data analysis. It can accomplish feature 
alignment by imposing constraints on data from different domains. Then 
the classifier which trained on the labeled dataset (source domain) could 
be directly applied to the unlabeled dataset (target domain), and get 
excellent generalization effect. More and more researchers apply 
domain adaptation methods to medical imaging analysis, including 
detection, classification, and segmentation [9] due to its great 
performance. 

In this paper, we propose a deep Prototype-Guided Multi-Scale 
Domain Adaptation (PMDA) framework and apply it to the auxiliary 
diagnosis of AD, MCI and CN. As shown in Fig. 2, there are three mod-
ules in the proposed method: (1) MRI multi-scale feature extraction 
module, which is used to extract features from source domain and target 
domain, (2) Prototype Maximum Density Divergence (Pro-MDD) mod-
ule, which is used to alleviate the equilibrium challenge of adversarial 
learning and constrain feature outlier samples to enhance feature 
alignment, and (3) Adversarial Domain Adaptation module is applied to 
achieve global feature alignment of the source domain and the target 
domain and co-training two different domain discriminators for training 
more generalizable models. We validated the proposed framework 
PMDA on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset and demonstrated the superiority of the method in terms of 
various medical metrics and algorithm performance. 

The major contributions of the study are as follows.  

1. The proposed PMDA method is an unsupervised domain adaptation 
framework for MRI-based AD and MCI detection without requiring 
any label information of target domain.  

2. We design a multi-scale feature extraction module based on 3D 
convolution and self-attention for MRI, and combine the advantages 
of metric learning and adversarial learning to achieve feature 
alignment of source domain and target domain.  

3. We propose Pro-MDD which introduces prototype learning in 
Maximum Density Divergence to strengthen the constraints on 
outlier samples, thus enhancing the feature alignment effect and 
making the model more generalizable and robust.  

4. Extensive experiments have been performed on sMRI data from 
ADNI dataset with domain shift demonstrate the significant superi-
ority of PMDA framework in AD and MCI classification and 
detection. 

This paper is organized as follows. We first review the relevant works 
in Section 2. The details of MRI data used in this work and PMDA 
method are introduced in section 3. In Section 4, we present various 
comparative experiments in detail, as well as a discussion of the 
experimental results. Section 5 we further analyze the influence of 
several key components of the proposed method and discuss the limi-
tations of the current work and future work. The paper is finally 
concluded in Section 6. 

2. Related work 

2.1. MRI-based AD and MCI analysis 

The sMRI have been widely used in computer-aided systems for AD 
and MCI identification. Ahmed et al. [10] extracted local features from 
hippocampus and posterior cingulate cortex, and then apply a Support 
Vector Machine (SVM) for AD and MCI classification. Beheshti et al. [11] 
proposed a histogram-based feature generation framework which based 
on patient-specific brain connectivity networks for AD diagnosis and 
MCI transformation prediction. In recent years, deep learning has ach-
ieved promising results in neuroimaging analysis. Aderghal et al. [12] 
used convolution neural networks (CNNs) with a data augmentation 
strategy adapted to the specificity of sMRI scans for AD classification. Oh 
et al. [13] proposed to use convolutional autoencoder (CAE)-based un-
supervised learning and supervised transfer learning for AD and MCI 
classification. Korolev et al. [14] proposed deep 3D VGG-like CNN ar-
chitectures for classification of brain MRI scans. 

In these methods, it is common to consider the testing data has the 
same or similar feature distribution with the training data. However, the 
collected imaging data usually come from different scanners or in-
stitutions actually, the feature distributions of the test and train data can 
be even completely different. If the feature distribution of train and test 
data is quite different, the transferability of the model will be signifi-
cantly affected. 

For more and more studies have become aware of the domain shift 
issue, domain adaption techniques begin to be gradually employed in 
the auxiliary diagnosis of AD [9]. Guan et al. [15] proposed an 
attention-guided deep domain adaptation (AD2A) framework for 
Multi-site MRI harmonization and apply it to automated brain disorder 
identification. Li et al. [16] proposed an effective knowledge transfer 
method to diminish the disparity among different datasets. However, 
most of them either using adversarial learning or metric learning to align 
the marginal (global) distributions, or align conditional (local) distri-
butions based on domain adaptation methods. In practice, marginal 
distributions often accompany with conditional distributions. The 
marginal distribution is always more important when two domains are 
very dissimilar. When the marginal distributions are similar, the con-
ditional distribution should be given more attention. Existing methods 
rarely consider the joint alignment of marginal and conditional distri-
butions. Our approach takes into account the marginal and conditional 
distributions at the same time, which can effectively improve the model 
performance when feature alignment is achieved. Disregarding the 
category information and outlier samples may bring about incorrect 
matching of categories, which may eventually lead to negative transfer. 

2.2. Attention enhanced convolution 

By using of convolution kernel, CNNs can automatically extract 
features from image conveniently and efficiently. Therefore, CNNs have 
become one of the most powerful techniques in various vision tasks. 
Previous researches showed that, applying attention mechanism over 
images can overcome locality limitation for CNNs [17]. Many re-
searchers have explored the possibility of employing attention modules 
to enhance the functionality of convolutional networks. 
Squeeze-and-Excitation (SE) [18] module and Gather-Excite (GE) [19] 
module implement the attention mechanism by reweighing each chan-
nel in feature map which focuses on correlations across channels. 
Bottleneck Attention Module (BAM) [20] and Convolutional Block 
Attention Module (CBAM) [21] independently reweigh both channels 
and spatial locations to optimize the feature map. Inspired by the 
powerful ability of self-attention in long-range dependencies, some 
research works try to combine self-attention and convolution together to 
further explore and fuse image features. BoTNet [22] is a hybrid model 
which achieves great performance. It uses both convolution and 
self-attention for visual recognition. Pan et al. [17] proposed a hybrid 
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operator to integrate self-attention and convolution modules by sharing 
the same heavy operations. Results on image classification and object 
detection benchmarks demonstrate the effectiveness of the proposed 
operator. Existing methods have proved that attention mechanism can 
enhance the extraction effect of convolution on image features. 

2.3. Prototype learning 

Prototypes can provide useful insight into the inner workings of the 
network, the relationship between classes, and the important aspects of 
the latent space [23]. Prototype learning is considered as a robust 
method when handling open-set recognition [24] and few-shot learning 
[25]. Wang et al. [26] proposed a novel prototype alignment network to 
learn class-specific prototype representations from a few support images 
within an embedding space for image segmentation. Tanwisuth et al. 
[27] proposed prototype-oriented alignment method that works well 
under various application scenarios of unsupervised domain adaptation. 
It is robust against class imbalance and data-privacy concerns. Yang 
et al. [28] proposed convolutional prototype network, which keeps CNN 
for representation learning but replaces the closed-world assumed 
softmax with an open-world oriented and human-like prototype model. 
Experiments demonstrate the efficiency and effectiveness of the method 
for both closed-set recognition and open-set recognition tasks. There-
fore, existing studies support the notion that domain adaptation and 
few-shot learning are significantly benefited by prototype learning. 

3. Materials and methodology 

3.1. Materials and image preprocessing 

Data used in this work is collected from the ADNI database (adni.lon 
i.usc.edu). The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial MRI, positron 
emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the pro-
gression of MCI and AD. 

All sMRI scans are performed anterior commissure (AC)–posterior 
commissure (PC) correction, skull and dura strip, and align to the 
Colin27 template to obtain the standard image data (1 × 1 × 1 mm3). 
The data details are shown in Table 1. 

3.2. Domain shift assessment 

Software and hardware setting of MRI equipment has a great impact 
on the MRI imaging. One of the elements is the magnetic field strength. 
The MRI data in the ADNI database were primarily obtained by scanning 
at two magnetic field strengths: 3T and 1.5T. 3T MRI has more advan-
tages compared with 1.5T, such as higher spatial resolution, higher 
signal-to-noise ratio, and better image enhancement effect. In this paper, 
3T and 1.5T MRI data were used as the source domain and the target 
domain, respectively. Data preprocessing can match normalized in-
tensities of all data from different data sources [29]. However, the 
impact of scanner effects remains and the scanner-specific bias is unable 
to remove [30]. When using sMRI for the identification of AD and MCI, 
even after careful preprocessing, the domain shift introduced by scanner 
effects remains and the scanner-specific bias is the main factor affecting 
the generalization performance of deep learning model. 

To evaluate the domain shift of the used MRI dataset, we use T-SNE 
[31] to perform dimensionality reduction and show the feature distri-
butions on source domain and target domain data before feed them into 
model for supervised learning or domain adaptation. Fig. 1(a) shows 
that after data preprocessing, although a large amount of data clustered 
together, there are still some outliers. So it shows the differences in 
marginal (global) distribution of all data. Fig. 1(b) shows the zoomed in 
result of the clustered area. We can see that although the marginal 
distributions of source domain and target domain aligned, all the cate-
gories are mixed together and difficult to separate from each other. 
Therefore, differences in conditional (local) distributions are existed in 
the used dataset as well. 

By observing the feature distribution of all data, it can be found that 
despite both our source domain and target domain data have been 
preprocessed in the same way, marginal and conditional distributions 
differences of the two domains are still existed. It is conceivable that the 
difference in data distribution will be even greater if the data comes 
from different sources or acquisition domains. 

3.3. Problem definition 

Experiments focus on the problem of Unsupervised Domain Adap-
tation (UDA) for AD and MCI classification. In UDA setting, the source 
and target data are sampled from different distributions PS(x, y) and 
PT(x, y) respectively, where PS(x, y) ∕= PT(x, y). The source domain is 
denoted as D S = {(xS

i , yS
i )}

nS
i=1, where xS

i is the i-th source sample, yS
i is 

the corresponding category label and nS indicate the number of source 
data. Also, we have nt samples of unlabeled sMRI data in target domain 
which denoted as D T = {xT

i }
nT
i=1, where xT

i is the i-th target sample. The 
source and target domain are assumed to share the same set of category 
labels C = {1,2, ...,K} and K indicate the number of classes in both do-
mains. Our work is to design an unsupervised learning model, which is 
trained on the labeled source domain data and unlabeled target domain 
data. Then by using this model to classify the target domain data. 

3.4. Method 

As shown in Fig. 2, the proposed PMDA framework consists of three 
parts: (1) MRI Multi-Scale Feature Extraction module, (2) Prototype 
Maximum Density Divergence (Pro-MDD) module, and (3) Adversarial 
Domain Adaptation module. The details of each component are as 
follows. 

3.4.1. MRI multi-scale feature extraction module 
Considering the high dimension of MRI data, we adopt 3D CNNs as 

the backbone to extract the spatial feature. The convolution layers of 3D 
CNN could get the high-level semantic information easily in feature 
extraction module. 

In order to locate the disease-related regions, we generate a spatial 
attention map which can detect disease-related brain areas automati-
cally by utilizing the inter-spatial relationship of features. To compute 
the spatial attention, the convolution results of the first layer are 
denoted as the input feature map M, then average-pooling and max- 
pooling operations along the channel axis are performed on M respec-
tively. The results of the two pooling results are concatenated and a 
standard 3D convolution layer is applied to obtain the spatial attention 
map. In the spatial attention map, larger weight is given to the identified 
important regions and relatively smaller weight to the unimportant re-
gions. The attention map A is defined as follows: 

A= σ
(
f 3×3×3( [Mmax,Mavg

]))
(1)  

where σ represents the sigmoid function and f3×3×3 denotes a convolu-
tion operator with 3 × 3 × 3 kernel. 

The source domain and target domain data use the same feature 
extraction network and share weights. In order to encourage the atten-

Table 1 
The details of dataset.  

Category 3T 1.5T Subject 

AD 128 144 272 
MCI 160 152 312 
CN 152 160 312  
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tion consistency and transfer semantic information from source domain 
to target domain, an attention consistency loss is added in our frame-
work. We define the spatial attention map of the source domain as AS, 
and the target domain as AT. Calculate the mean square difference of the 
two spatial attention maps as the attention consistency loss function: 

L att =
1

N × D × W × H

∑N

i=1

⃦
⃦AS

i − AT
i

⃦
⃦ (2)  

where N is the number of samples in a batch, D, W and H represent the 
depth, width and height of the feature map, respectively. 

Self-attention can capture long-range contextual information be-
tween feature maps, so we use it to enhance representation capability. 
Considering that self-attention requires O(n2d) memory and computa-
tion [32] when performed globally across n entities, we incorporate 
self-attention module after Conv6 and Conv8 layers. To aggregate 
multi-scale features, we first use self-attention to process the output 
features of Conv6 and Conv8, then together with the last layer of fea-
tures to perform feature fusion on them. We describe the detailed 
operation of self-attention operation below. 

The output feature maps of conv6 and conv8 have different scales of 
semantic information, and we use them as input of self-attention module 
respectively. Taking the output of Conv6 as an example, named the 
feature map of Conv6 as Min ∈ ℝC×H×W×D, we use 3D-convolution to 

generate two new feature maps Q and K respectively, {Q,

K} ∈ RC×H×W×D. Then reshape them to RC×N, where N = H × W × D is 
the number of voxels. Finally perform matrix multiplication on the Q 
and K, and apply a softmax layer to calculate the spatial attention map 
S ∈ RN×N: 

sji =
exp

(
Qi⋅Kj

)

∑N

i=1
exp

(
Qi⋅Kj

)
(3)  

Where sji measures the ith position’s impact on jth position. The more 
similar feature representations of the two position contributes to greater 
correlation between them. 

Meanwhile, we feed feature Min into a 3D-convolution layer to 
generate a new feature map V ∈ RC×H×W×D and reshape it to RC×N. Then 
perform a matrix multiplication on V and S and multiply a scale 
parameter α. Finally perform a skip-connection operation with features 
Min to obtain the final output E ∈ RC×H×W×D: 

Ej =α
∑N

i=1

(
sjiVi

)
+Min (4)  

where α is initialized as 0 and gradually learns to assign more weight. 
It can be inferred from Eq. (4) that E at each position is a weighted 

sum of the features across all positions and features of Conv6. Therefore, 

Fig. 1. Data distribution visualization of source domain and target domain.  

Fig. 2. Illustration of the proposed Prototype-Guided Multi-Scale Domain Adaptation (PMDA) framework for MRI-based AD diagnosis. There are three components: 
(1) MRI Multi-Scale Feature Extraction module, (2) Prototype Maximum Density Divergence module, and (3) Adversarial Domain Adaptation module. 
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E selectively aggregates contexts based on the spatial attention map and 
has a global contextual view. It could capture long-range contextual 
information more effectively and learn better feature representation. 

3.4.2. Prototype Maximum Density Divergence module 
In order to alleviate the negative impact of domain shift and outlier 

samples, we use Pro-MDD module in the proposed framework. We 
integrate the advantages of both prototype learning and metric learning, 
and both of them has a mutually beneficial effect with the subsequent 
adversarial domain adaptation module. 

MDD [33] manages to align the source domain and target domain by 
simultaneously minimizing the inter-domain divergence and maxi-
mizing the intra-class density and it was verified could alleviate the 
equilibrium challenge of adversarial learning in domain adaptation. 
Suppose we have ns samples {xs,1, xs,2,⋯xs,ns} in the source domain and 
nt samples {xt,1, xt,2,⋯xt,nt} in the target domain, and their labels are 
denoted as ys and yt, respectively. Our purpose is to minimize MDD(PS, 
PT) and the formula is defined as follows: 

MDD(PS,PT)=
1
nb

∑nb

i

⃦
⃦xs,i − xt,i

⃦
⃦2

2

+
1

ms

∑

ys,i=y′s,j

⃦
⃦
⃦xs,i − x′

s,j

⃦
⃦
⃦

2

2

+
1
mt

∑

yt,i=y′t,j

⃦
⃦
⃦xt,i − x′

t,j

⃦
⃦
⃦

2

2

(5)  

where nb is equal to the half of the batch size, ys,i = y′

s,j indicates that xs,i 

and x′

s,j have the same label. Since label information is unavailable for 
the target domain, we use pseudo labels. Due to the number of samples 
in batch which satisfies ys,i = y′

s,j is uncertain before training, we use ms 

and mt to represent the appropriate number. In experiments, it calcu-
lates the pair-wise distance at the relative position for the reason that 
trained by batch. 

However, the use of MDD loss will introduce the following problems 
in our experiments. First, MDD may sensitive to outlier samples in a 
mini-batch when used to align the source and target marginal distribu-
tions. We attribute this problem to the sampling variability of both the 
source and target samples. Second, limited by the high dimensionality of 
MRI data and the impact of computing power, we can only use small 
batches for model training. Even if the two domains share the same set of 
category labels, we cannot guarantee that the samples drawn from the 
source and target domains will cover the same set of classes in each mini- 
batch. Especially, if the label proportions shift between domains, 
learning a domain-invariant representation may not perform better than 
using the source data alone to train the model. Therefore, in order to 
deal with both of these problems, we propose prototype MDD (Pro- 
MDD), which introduce the theory of prototype learning in MDD loss. 

Prototype learning by constructing class prototypes which can 
represent the samples with the same label in the latent space, integrate 
this idea with MDD can improve generalization performance of the 
model. We compute the mean vector over the source data features with 
true labels as class prototypes. The influence of outlier samples can be 
alleviated to a certain extent by calculating the Euclidean norm distance 
between the source domain and target domain data with the corre-
sponding prototype instead of the data with the same label in a batch. 
The class prototype is defined as the following formula: 

ck =
1

|XS|

∑

(xi ,yi)∈XS

fφ(xi) (6)  

where ck represents the prototype of class k, f∅ represents the feature 
extraction module with learnable parameters φ. Each prototype is the 
mean vector of the source data belonging to its class. 

Meanwhile, if we directly compute the mean vector of all data of a 
category in the source domain is computational-intensive during 
training. To address this problem, we estimate the class prototypes as the 
moving average of the cluster centroids in mini-batches, so that we can 

track the prototypes that slowly move. Specifically, in each iteration, the 
prototype is estimated as: 

ck = γck + (1 − γ)c′

k (7)  

where c′

k is the mean vector of class k calculated within the current 
training batch from the feature extraction module, and γ is the mo-
mentum coefficient. 

At this point the Pro-MDD loss calculated by the following equation: 

L pro− MDD =
1
nb

∑nb

i

⃦
⃦xs,i − xt,i

⃦
⃦2

2

+
1

ms

∑k

n=1

∑

ys,i=yn

⃦
⃦xs,i − cn

⃦
⃦2

2

+
1
mt

∑k

n=1

∑

yt,i=yn

⃦
⃦xt,i − cn

⃦
⃦2

2

(8)  

where k represents the number of class prototypes. 
We can see that the 1

nb

∑nb
i
⃦
⃦xs,i − xt,i

⃦
⃦2

2 of Eq. (8) considers the inter- 
domain divergence which can bring the feature distribution of the 
source domain and the target domain closer, the 
1
ms

∑k
n=1

∑
ys,i=yn

⃦
⃦xs,i − cn

⃦
⃦2

2 
and 1

mt

∑k
n=1

∑
yt,i=yn

⃦
⃦xt,i − cn

⃦
⃦2

2 of Eq. (8) 
consider the intra-domain density, which can make the features of which 
have same class label closer and different class label farther. The use of 
prototype learning addresses the impact of sampling variability and 
negative transfer caused by outlier samples. 

To achieve task-oriented alignment, we introduce ToAlign [34] 
which motivated by Grad-CAM [35] in this module. It uses the gradients 
of the predicted score corresponding to the ground-truth class as the 
attention weights to obtain the task-discriminative features. So we uti-
lize it to decompose a holistic feature of each source sample into a 
task-discriminative feature and a task-irrelevant feature to enable 
task-oriented alignment with the target features. 

3.4.3. Adversarial domain adaptation module 
The adversarial domain adaptation algorithm is used to reduce the 

feature distribution differences between source domain and target 
domain. Feature extractor and domain discriminator are the keys of this 
module, and both of them are trained in an adversarial manner. Domain 
discriminator is used to distinguish whether the data comes from source 
domain or target domain, and feature extractor is applied to confuse the 
domain discriminator by extracting domain-invariant features. Once the 
domain discriminator cannot distinguish whether a learned feature from 
the source domain or the target domain, it is considered that the learned 
representations are domain-invariant. 

The Source Classifier is trained to discriminate the labels of the input 
MRI samples from the source domain. Thus, the supervised information 
on source domain can be utilized. Using the feature map generated by 
the Multi-Scale Feature Extraction module as input, we apply three fully- 
connected layers in the source classifier for classification. Its training 
objective is a cross-entropy loss, which can be formulated as: 

L cls = −
1

NS

∑C

c=1

∑NS

i=1
yxi log Gy

(
Gf (xi)

)
(9)  

where NS is the number of samples on source domain, C is the number of 
classes, Gy is the source classifier and Gf is the feature extractor. The 
target classifier shares weights with the source classifier and achieve the 
final classification of the target domain. 

The domain discriminator here is based on the Domain-adversarial 
Neural Network (DANN), and parameters can be trained efficiently 
with the Gradient Reversal Layer (GRL) [36]. Due to data limitation, one 
discriminator over-fitting is easy to occur in domain adaptation, which 
leads to degradation. Specifically, over-fitting discriminator produces 
very high prediction scores and very small discriminator loss. It will lead 
to training divergence and degraded generation [37]. Inspired by 
co-training with multiple tasks [38], we utilize two domain 
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discriminators to co-train and calculate the loss of the domain discrim-
inator as: 

L D1 =
1

ns + nt

∑

xi∈Ds∪Dt

L d1

(
Gd1

(
Gf (xi)

)
, di

)
(10)  

L D2 =
1

ns + nt

∑

xi∈Ds∪Dt

L d2

(
Gd2

(
Gf (xi)

)
, di

)
(11)  

where di is the domain label of the input data xi. Gd1 and Gd2 are two 
distinctive domain discriminators. L d1 and L d2 are the domain 
discriminator losses calculated using the cross-entropy loss. 

With the co-training design, although one discriminator may overfit 
and focuses on learning simple patterns or structures, the other 
discriminator will be encouraged to learn different information such as 
complex patterns and structures. Inspired by GenCo [39], 
Weight-Discrepancy Co-training (WeCo) which co-trains multiple 
distinctive discriminators by diversifying their parameters with a weight 
discrepancy loss is used in this module. The two discriminators thus 
complement each other to focus on different types of information, which 
helps mitigate the over-fitting issue effectively. 

Define the weight discrepancy loss L wd, it minimizes the cosine 
distance between the weights of Gd1 and Gd2 . 

L wd(Gd1 ,Gd2 )=
WGd1

̅̅ →WGd2

̅̅ →

⃒
⃒
⃒WGd1

̅̅ →
⃒
⃒
⃒

⃒
⃒
⃒WGd2

̅̅ →
⃒
⃒
⃒

(12)  

where WGd1

̅̅̅→ and WGd2

̅̅̅→ are the weights of Gd1 and Gd2 . 
Apply L wd on only one discriminator for simplicity. The overall 

adversarial loss can thus be shown as: 

L Adv = λ(L D1 +L D2 ) + (1 − λ)L wd (13)  

where λ is a trade-off parameter. 
To summarize, the objective of our proposed method is to jointly 

optimize four components including source classification loss L cls, 
attention consistency loss L att, adversarial loss L Adv and prototype 
MDD loss L pro− MDD. The overall optimization problem can be written as 
follows: 

min
F

L total =L cls + αL att + βL Adv + ωL pro− MDD (14)  

where the parameters α、 β and ω weight the relative importance of 
these loss terms. 

4. Experiments 

4.1. Experimental setup 

We conduct three groups of experiments, including: (1) AD vs. CN 
classification, (2) AD vs. MCI classification, and (3) MCI vs. CN classi-
fication. Each task is trained with labeled source domain data and un-
labeled target domain data, and finally compare the recognition effect of 
PMDA and other methods on the target domain. 

The proposed model PMDA was implemented in PyTorch. The 
network was trained for 100 epochs. The Adam [40] was used as the 
optimizer with a learning rate of 1 × 10− 3 and use a small batch of 8 
samples per domain. The dropout operation with a rate of 0.5 was used 
in classifier to prevent over-fitting. We empirically set the parameter λ、 
α、 β and ω to be 0.9、0.1、0.1 and 0.2 respectively. 

At the beginning of the training work, we pretrain the MRI Multi- 
Scale Feature Extraction module on source domain for 30 epochs to 
get the initial weight. Then, the proposed method with three modules 
were further fine-tuned and co-trained via Eq. (14). 

Four metrics were employed for performance evaluation in the ex-
periments, i.e., classification accuracy (ACC), sensitivity (SEN), speci-

ficity (SPE), and area under the receiver operating characteristic curve 
(AUC). Denote TP, TN, FP, FN as the true positive, true negative, false 
positive and false negative, respectively. Then, the first three evaluation 
metrics can be defined as ACC = TP+TN

TP+TN+FP+FN, SEN = TP
TP+FN, SPE = TN

TN+FP. 
For each metric, a higher value indicates better classification 
performance. 

4.2. Comparison with state-of-the-art methods 

To acquire a broad perspective, the proposed PMDA framework is 
compared with several recent literatures which applied their methods on 
the ADNI database as well. It should be emphasized that, although all 
methods we compare were trained and tested on the ADNI, the exact 
dataset parameters such as scanning parameters, imaging equipment, 
sample size, etc., and the model with training parameters used in each 
literature are different. Therefore, the results are only used for the 
comparison of relative levels among methods, and the numbers do not 
represent the absolute superiority or inferiority. 

From Table 2, it can be found that our method outperforms most of 
the listed machine learning methods and deep learning methods. By 
performing feature alignment on the data of source domain and target 
domain, the proposed PMDA effectively improved the model perfor-
mance on AD detection. Compared with above supervised learning 
methods that assume train data and test data are identically distributed, 
our method takes into account the inconsistency of feature distribution 
and weaken the effect of domain shift. 

4.3. Results of classification in target domain 

We evaluate the proposed PMDA method and the competing 
methods in cross-domain problems. Take 3T MRI with label as the 
source domain and 1.5T MRI without label as the target domain and the 
results we show in the following tables are classification results on the 
target domain. We compared our method with 3DResNet50 [43] and 
five domain adaptation methods, including DANN [36], DAAN [44], 
CDAN [45], AD2A [15] and ATM [33]. These competing methods are 
briefly introduced as follows.  

(1) 3DResNet50. ResNet is a ubiquitously used architecture which 
enabled efficient implementation of deeper and bigger networks. 
ResNet50 is used as baseline model of supervised learning on 
source domain and make prediction on target domain. Thus, no 
feature alignment is performed on it. Since MRI data we used are 
3D data, the 2D convolution blocks in ResNet50 are replaced with 
3D convolution blocks. 

Table 2 
Classification accuracy of different methods.  

Method AD vs. 
CN 

AD vs. 
MCI 

MCI vs. 
CN 

Subject 

Ahmed et al. [10] 83.77 62.07 69.45 137AD, 210MCI, 
162CN 

Beheshti et al. 
[11] 

84.17 67.59 70.38 83AD, 87MCI, 61CN 

Aderghal et al. 
[12] 

82.80 62.50 66.00 188AD, 399MCI, 
228CN 

Oh et al. [13] 86.60 60.97 63.04 198AD, 267MCI, 
230CN 

Korolev et al. 
[14] 

79.00 62.00 63.00 50AD, 120MCI, 
61CN 

Prajapati et al. 
[41] 

87.50 83.33 79.17 58AD, 60MCI, 60CN 

Xia et al. [42] 88.30 – 79.02 154AD, 346MCI, 
207CN 

PMDA 92.11 76.01 82.37 128AD, 160MCI, 
152CN  
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(2) DANN. DANN is a classic adversarial learning-based domain 
adaptation method that has been widely used in medical imaging 
tasks. Unlike PMDA, it adopts one single domain classifier for 
domain adaptation. 

(3) DAAN. The model can dynamically learn domain-invariant rep-
resentations while quantitatively evaluate the relative impor-
tance of global and local domain distributions. It is the first 
attempt to perform dynamic adversarial distribution adaptation 
for deep adversarial learning.  

(4) CDAN. CDAN is a principled framework that conditions the 
adversarial adaptation models on discriminative information 
conveyed in the classifier predictions. It can improve the dis-
criminability and entropy conditioning which could control the 
uncertainty of classifier predictions to guarantee the 
transferability.  

(5) AD2A. AD2A is an attention-guided deep domain adaptation 
framework which used for Multi-site MRI harmonization. The 
method is trained in an adversarial learning manner using a 
domain discriminator and feature extractor. In the area of domain 
adaptation, this method is effectively in identifying brain 
diseases.  

(6) ATM. ATM enjoys the benefits of both adversarial training and 
metric learning. The MDD loss make ATM can align two domains 
by simultaneously minimizing the inter-domain divergence and 
maximizing the intra-class density. Experiments show that ATM 
can outperform previous state-of-the-arts methods with signifi-
cant advantages. 

For fairness comparison, the Multi-Scale Feature Extraction module 
of PMDA is used in each method. Meanwhile, the training strategies are 
exactly the same, including the learning rate and the number of training 
epochs. 

From Table 3, it is found that the proposed PMDA method achieves 
the highest accuracy on the classification tasks of AD vs CN, which is 
9.54% higher than the baseline 3DResNet50. Among the compared 
domain adaptation methods, all the ACC, SEN and AUC of PMDA are the 
best. 

From Table 4, the four indicators of PMDA on this task show excel-
lent results than 3DResNet50. Compared to the listed domain adaptation 
methods, the ACC, SPE and AUC of PMDA is the best, the SEN is 9.72%, 
10.41% lower than CDAN and AD2A respectively. However, PMDA has a 
better balance between SEN and SPE. Compare with Table 3, AD vs. MCI 
is much more difficult to identify. The reason may be that MCI is an early 
developmental stage of AD, and its features are not obvious in MRI, 
which makes identification difficult. 

From Table 5, PMDA achieves the highest accuracy of 82.37% on this 
classification task, and the SEN, SPE and AUC values are the best as well. 
Compared with AD, the brain structure lesions of MCI are more subtle, 
and the structural lesions of the brain are not exactly the same for 
different patients, so the identification of MCI and CN is difficult than 
AD and CN. The classification accuracy of MCI and CN was 6.36% higher 
than that of AD and MCI, indicating that our model PMDA has more 
advantages in predicting MCI than distinguishing early and late stages of 
dementia. 

From the above 3 tables, we came to the following conclusions. 

Compared with DANN, AD2A which only use one domain discriminator, 
the mentioned four indicators of PMDA in the AD vs. CN and MCI vs. CN 
classification are improved, indicating the co-training two domain dis-
criminators strategy in adversarial domain adaptation module can 
effectively improve the generalization performance. 

Compared with DANN, DAAN, CDAN and AD2A, which only use 
adversarial learning, PMDA combines metric learning and adversarial 
learning. In three classification tasks both ACC and AUC have been 
improved in a certain extent, indicating that the Pro-MDD has played a 
significant role in alleviating problems such as the instability of adver-
sarial learning training and the disappearance of gradients. 

Compared with ATM which use the combination of metric learning 
and adversarial learning methods, PMDA generally improves the four 
indicators in the three classification tasks, indicating that the use of 
attention consistency loss for source domain and target domain semantic 
sharing and the strategy for incorporating prototype learning in MDD 
can enhance the predictive performance on the target domain. 

4.4. Results of 5-fold cross-validation classification 

In order to show more convincing and robust results for domain 
adaptation, 5-fold cross-validation strategy is used here. We mainly use 
the whole 3T data and four folds of the 1.5T data to serve as the training 
set (source domain). The rest of the 1.5T data serve as the testing set 
(target domain). The AD vs. CN classification results of 3DResNet50 and 
other domain adaptation methods in each fold are listed in Table 6. 

In Table 6, we can find that compare with supervised learning 
(3DResNet50) and other domain adaptation methods, the proposed 
PMDA method achieves the best results on ACC and AUC. These results 
show that our method still has great classification performance and 
robustness when the domain shift is not obvious. Meanwhile, compare 
with Table 3, all the methods in Table 6 have higher ACC and AUC 
values. This may be attributed to the fact that the source domain con-
tains both 3T and 1.5T MRI data, while the target domain only contains 
1.5T MRI data. Therefore, the domain shift of the source domain and the 
target domain is significantly decreased compared to the previous 
setting. Another reason for the better performance of our model is that 
we use more labeled source domain data for training. 

Table 3 
AD vs. CN classification results.  

Method ACC(%) SEN(%) SPE(%) AUC(%) 

3DResNet50 82.57 77.08 87.50 82.29 
DANN 86.51 79.17 93.13 86.14 
DAAN 86.51 84.03 88.75 86.39 
CDAN 85.86 87.50 84.38 85.94 
AD2A 88.49 86.81 90.00 88.40 
ATM 89.14 88.89 89.38 89.13 
PMDA 92.11 91.67 92.50 92.08  

Table 4 
AD vs. MCI classification results.  

Method ACC(%) SEN(%) SPE(%) AUC(%) 

3DResNet50 63.51 63.89 63.16 63.52 
DANN 67.91 59.72 75.66 67.69 
DAAN 64.19 65.97 62.50 64.24 
CDAN 66.55 82.64 51.32 66.98 
AD2A 67.91 83.33 53.29 68.31 
ATM 70.95 71.53 70.39 70.96 
PMDA 76.01 72.92 78.95 75.93  

Table 5 
MCI vs. CN classification results.  

Method ACC(%) SEN(%) SPE(%) AUC(%) 

3DResNet50 75.96 75.00 76.88 75.94 
DANN 76.60 82.89 70.63 76.76 
DAAN 79.17 80.26 78.13 79.19 
CDAN 77.89 75.66 80.00 77.83 
AD2A 80.13 82.89 77.50 80.20 
ATM 80.77 80.26 81.25 80.76 
PMDA 82.37 83.55 81.25 82.40  
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5. Discussion 

5.1. Ablation study 

In order to verify the effectiveness of each module of PMDA, we use 
seven variants to conduct ablation experiments. The effectiveness of self- 
attention, attention consistency loss, Pro-MDD and co-training on the 
PMDA is demonstrated through the following comparative experiments.  

(1) Apply nine 3D convolution layers with spatial attention as the 
backbone network of feature extraction (3DCNN) and three fully 
connection layers as the classifier which on the source domain 
with supervised learning. When the model reaches convergence, 
we use 3DCNN to extract features and the classifier on target 
domain is adopted to make prediction. 

(2) Add the Self-Attention (+SA) mechanism to the feature extrac-
tion module on the basis of (1). Currently, the feature extraction 
module implements multi-scale feature fusion, and it is still 
trained by supervised learning.  

(3) Add the attention consistency loss (+ATTC) to the multi-scale 
feature extraction module on the basis of (2) which can transfer 
semantic information from the source domain to the target 
domain.  

(4) Add the adversarial domain adaptation module with one single 
domain discriminator (+Adv1) on the basis of (3).  

(5) On the basis of (3), add the adversarial domain adaptation 
module (+Adv2). Co-train two different domain discriminators 
and use weight discrepancy loss to mitigate the discriminator 
over-fitting issue.  

(6) Add the MDD module (+MDD) on the basis of (5);  
(7) Add the Pro-MDD module (+Pro-MDD) on the basis of (5). 

Table 7 reports the results achieved by seven variants in the task of 
AD vs. CN, AD vs. MCI and MCI vs. CN classification. The baseline 
3DCNN has achieved general classification results on the three classifi-
cation tasks. When self-attention (+SA) is added to achieve multi-scale 
feature fusion, the evaluation metrics on all three tasks are signifi-
cantly improved. The inclusion of attention consistency loss (+ATTC) 
also resulted in different magnitudes of performance improvement for 
the model on the three tasks, suggesting that it may play a role in sharing 
semantic information between the source domain and target domain. 

Almost all the indicators of the three tasks are all improved after the 
+Adv1 is added to the multi-scale feature extraction module, where the 
SEN and SPE performance of three tasks have great difference. It reflects 
that the adversarial training with single discriminator is always instable 
in a certain extent. The ACC and AUC have a small range of improve-
ment again on the three tasks after the +Adv2 is added to the multi-scale 
feature extraction module. At the same time, the gap between the SEN 
and SPE metrics becomes smaller, and this phenomenon is particularly 
evident on the MCI vs. CN task. This result verifies that co-training two 
domain discriminators and add weight discrepancy loss can effectively 
enhance the generalization performance of model and alleviate instable 
problems of adversarial training. 

Although adversarial domain adaptation can achieve effective 
feature alignment when faced with cross-domain data, it only completes 
the alignment of the marginal feature distribution, does not consider the 
category feature information. The results of the three classification tasks 
are getting better + MDD, which demonstrate MDD can effectively 
alleviate the difference in conditional distributions. Therefore MDD has 
obvious benefits in minimizing the inter-domain divergence and maxi-
mizing the intra-class density. 

However, MDD does not take into account the negative impact of 
outliers samples on model generalization performance. If there are 
samples with obvious outliers, it is easy to affect the final classification 
performance. Results of +Pro-MDD show that the effect is more signif-
icant than + MDD, which verifies that prototype learning in MDD can 
effectively enhance feature alignment and improve classification per-
formance of feature outlier samples. 

5.2. Visualization via Grad-CAM 

Since visualization of salient regions provides important clinical in-
formation, we propose to provide interpretable information by local-
izing brain regions relevant to decision-making using Gradient-weighted 
Class Activation Mapping (Grad-CAM) [35]. For the target domain, we 
visualized the results for six subjects of ADNI under PMDA (Fig. 3). We 
can see the model focuses on the hippocampus [3], ventricles [46], and 
some areas of the cortex, which are consistent with the important areas 
for AD diagnosis by physicians. Especially, it can be noticed that the 
detected key areas of AD are more obvious than those of MCI. In some 
extent, it verifies that structural changes caused by AD are relatively 
easier to be detected than MCI. 

Table 6 
AD vs. CN classification results achieved by PMDA and six competing methods on one fold of target domain from ADNI using 5-fold cross-validation.  

Method Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 

ACC(%) AUC(%) ACC(%) AUC(%) ACC(%) AUC(%) ACC(%) AUC(%) ACC(%) AUC(%) 

3DResNet50 87.50 85.42 85.71 85.71 85.71 85.64 91.07 90.74 85.71 87.88 
DANN 94.64 94.00 94.64 94.27 87.50 87.55 92.86 93.33 92.86 92.56 
DAAN 92.86 92.59 91.07 89.13 89.29 89.29 92.86 93.55 91.07 90.64 
CDAN 91.07 89.13 89.29 87.50 94.64 94.23 96.43 96.55 96.43 96.55 
AD2A 94.64 93.75 92.86 92.00 92.86 93.10 94.64 94.64 94.64 94.27 
ATM 92.86 92.98 94.64 93.48 94.64 94.64 100.00 100.00 98.21 98.39 
PMDA 96.43 96.30 98.21 98.00 96.43 96.00 100.00 100.00 98.21 98.33  

Table 7 
Ablation experiment results.  

Task model ACC(%) SEN(%) SPE(%) AUC(%) 

AD vs. CN 3DCNN 76.97 65.28 87.50 76.39 
+SA 80.92 77.08 84.38 80.73 
+ATTC 83.55 76.39 90.00 83.19 
+Adv1 86.51 79.17 93.13 86.14 
+Adv2 87.83 84.72 90.63 87.67 
+MDD 89.47 88.19 90.63 89.41 
+Pro-MDD 92.11 91.67 92.50 92.08 

AD vs. MCI 3DCNN 60.47 49.31 71.05 60.18 
+SA 63.85 67.36 60.53 63.94 
+ATTC 64.53 54.17 74.34 64.25 
+Adv1 67.91 59.72 75.66 67.69 
+Adv2 68.24 72.92 63.82 68.37 
+MDD 70.27 65.97 74.34 70.16 
+Pro-MDD 76.01 72.92 78.95 75.93 

MCI vs. CN 3DCNN 69.87 73.03 66.88 69.95 
+SA 74.36 76.97 71.88 74.42 
+ATTC 75.32 78.29 72.50 75.39 
+Adv1 76.60 82.89 70.63 76.76 
+Adv2 77.56 76.32 78.75 77.53 
+MDD 78.21 69.08 86.88 77.98 
+Pro-MDD 82.37 83.55 81.25 82.40  
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5.3. Visualization of distribution after adaptation 

We use AD and CN sMRI data to show the feature distribution of 
source domain (3T MRI) and target domain (1.5T MRI) after domain 
adaptation. 584 data (AD and CN) in the source domain and target 
domain are used as the input of 3DResNet50 and PMDA. T-SNE algo-
rithm [31] is employed for dimensionality reduction visualization. 
Feature distributions of 3DResNet50 model has performed supervised 
learning training on the source domain, the dimensionality reduction 
visualization of the features retrieved from the source domain and target 
domain is shown in Fig. 4(a). PMDA perform feature alignment between 
source domain and target domain, the visualization of the feature dis-
tribution is shown in Fig. 4(b). Fig. 4(a) show the features of AD and CN 
in source domain can be clearly distinguished. But for target domain, AD 
and CN features have mixed in a certain degree, which leads to the poor 
final classification. At the same time, PMDA performs feature alignment 
during feature extraction, the features distributions in the target domain 
(yellow spots and green spots) will close to the same class of the source 
domain (red spots and blue spots). It verifies our method has good 
transferability and discriminability. 

5.4. Limitations and future work 

Although the proposed PMDA method has achieved great perfor-
mance on AD, MCI and CN classification tasks, whereas limitations of 
this method need to be concerned as well. 

Firstly, PMDA is trained from scratch, and does not consider pre- 
trained weights. Pretrain the existing 3D CNNs or Transformer models 
on the other large-scale 3D medical image datasets and fine-tune them 
on our datasets may further improve the classification performance. 
Secondly, for deep learning work, the size of the used dataset is rela-
tively small. If more MRI data with obvious domain shift could be used, 
we can develop models with stronger recognition and generalization 
performance. Thirdly, experiments in this paper set up one source 
domain and one target domain. In the follow-up work, multi-source 
domain with single-target domain or multi-source domain with multi- 
target domain could be extended. Finally, due to privacy preserving 
policies, the training data in source domain required by most of the 
existing domain adaptation methods is usually unavailable. How to 
improve target domain performance without source domain should be in 
concern in the future. 

Fig. 3. Visualization via Grad-CAM in target domain. The red and purple denote the greater and lower impact on the model, respectively.  

Fig. 4. Visualization of distribution of features extracted from 3DResNet50 and PMDA for source domain and target domain.  
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6. Conclusion 

In this paper, we proposed a PMDA framework for AD, MCI and CN 
identification. Specifically, our method consists of three modules, i.e., a 
MRI multi-scale feature extraction module, which integrates convolu-
tion and self-attention for feature extraction and multi-scale fusion, a 
Proto-MDD module which introduces prototype learning in MDD to 
enhance feature alignment and alleviate the impact of outlier samples on 
model training, and an Adversarial Domain Adaptation module which 
aligns the marginal distributions of source domain and target domain 
and co-training two different domain discriminators to mitigate the 
discriminator over-fitting issue. We evaluated the proposed PMDA 
method on 896 sMRIs data acquired from ADNI. Experimental results 
show that, compared to supervised learning method such as 3DResNet50 
and other state-of-the-art domain adaptation methods, the PMDA 
method is more effective on AD, MCI and CN classification. 
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